
27 

For steady state shock fronts the phase velocity cp is the same 
for all parts of the wave and Eq . (13) can be integrated to give the usual 
momentum jump condition 

P - P = p (U-u )(u-u ) 
000 0 

where cp has been replaced by the shock velocity with respect to material 

coordinates, U-uo ' Further, since P is a function of u only, we have: 

_ dU(dP/ atJ ap _ 
Cu - dP du/dPjah - cp 

Thus, Eq. (12) becomes 

Integrating yields the continuity jump condition 

The stress-volume curve is seen to be a straight line joining the end states 
(Rayleigh line) for, integrating Eq. (15) yields, 

= V I(P-P )/(V -V) 
000 

= const. 

Finally, Eq. (16) yields the Rankine-Hugoniot relation : 

Note that this derivation does not require that the states be equilibrium 

states (except insofar as steady state implies equilibrium end states). More­
over, if the shock front is considered to be a discontinuity then cp = Cu 
and the jump conditions hold even if the flow behind the wave is unsteady. 

C. Isentropic Flow in Fluids 
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The development of non-linear wave propagation theory in fluids 
relies heavily on the method of characteristics. 8 This method, in turn, 
depends on the assumption that the flow is everywhere particle-isentropic 
and that, therefore, all states are equilibrium states. 

If to Eqs. (7) and (8) we add the relations: 

(18) 

and 

P = pep,S) (19) 

where S is entropy, we can write: 

on h = const., 

where a is the sound speed with respect to spatial (Eulerian) coordinates. 
This relation allows us to eliminate the derivat1ve in p from Eq. (7): 

or 

(20) 

Multiplying Eq. (8) by a, 

pa(au/at) + (pa/po)(aP/ah) = 0 (21) 

Adding and subtracting these gives 

[(a/at) ± (pa/po)(a/ah)]P ± pa[(a/at) ± (pa/po)(a/ah)]u = 0 

The original equations are now reduced to a directional derivative and 

I 


