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For steady state shock fronts the phase velocity cp is the same 
for all parts of the wave and Eq . (13) can be integrated to give the usual 
momentum jump condition 

P - P = p (U-u )(u-u ) 
000 0 

where cp has been replaced by the shock velocity with respect to material 

coordinates, U-uo ' Further, since P is a function of u only, we have: 

_ dU(dP/ atJ ap _ 
Cu - dP du/dPjah - cp 

Thus, Eq. (12) becomes 

Integrating yields the continuity jump condition 

The stress-volume curve is seen to be a straight line joining the end states 
(Rayleigh line) for, integrating Eq. (15) yields, 

= V I(P-P )/(V -V) 
000 

= const. 

Finally, Eq. (16) yields the Rankine-Hugoniot relation : 

Note that this derivation does not require that the states be equilibrium 

states (except insofar as steady state implies equilibrium end states). More
over, if the shock front is considered to be a discontinuity then cp = Cu 
and the jump conditions hold even if the flow behind the wave is unsteady. 

C. Isentropic Flow in Fluids 
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The development of non-linear wave propagation theory in fluids 
relies heavily on the method of characteristics. 8 This method, in turn, 
depends on the assumption that the flow is everywhere particle-isentropic 
and that, therefore, all states are equilibrium states. 

If to Eqs. (7) and (8) we add the relations: 

(18) 

and 

P = pep,S) (19) 

where S is entropy, we can write: 

on h = const., 

where a is the sound speed with respect to spatial (Eulerian) coordinates. 
This relation allows us to eliminate the derivat1ve in p from Eq. (7): 

or 

(20) 

Multiplying Eq. (8) by a, 

pa(au/at) + (pa/po)(aP/ah) = 0 (21) 

Adding and subtracting these gives 

[(a/at) ± (pa/po)(a/ah)]P ± pa[(a/at) ± (pa/po)(a/ah)]u = 0 

The original equations are now reduced to a directional derivative and 

I 


